












_1_. X^\̂ ,̂ 0-4RCt.i0JI

S-rings in finite groups appeared as early as 1933

due to Schur in [3], 'out their theory was not developed until

191+9 and subsequently by Wielandt and Tamaschlce. ([5], [h] et al.)

Only recently have they been considered in continuous groups.

For a compact group G, an S-ring is a subalgebra of

G(G) with respect to both pointwise and convolution multiplications,

which is self-adjoint with respect to both involutions, and which

contains the constant functions. In this paper, we consider the

compact group G acting on a homogeneous space n by right

multiplication and show that the centraliser algebra has a

strongly dense subalgebra which is the set of convolution operators

by functions in a generalised S-ring. This i_s an S-ring in the

case where n can be identified with a subgroup H of G - e.g.

a quotient group or a direct product component. After

preliminary material in §2, we consider in §3 the particular

case when G is the direct product of two subgroups H and K, as

this gives a clearer motivation. Finally in %h, v/e deal with

the general case which has some interesting variations. This

work generalises results of Wielandt in [6] p. 80.
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-2_v . Def i

n

jLAi OILS.- ^fl^ preliminary resiilts

.

Let G be a compact group with identity i , and C(G-) the

set of continuous complex-valued functions on G. '-'''^e shall

use the follov>/ing notation: for f , g e 0(0), x, y e G,

fy(x) = f(xy); yf(x) = f(y"Sc)| f-{x) = f(x ^)i f#(x) = fU)

;

f _A
(f - g)(x) = / f(y)g(y )dm^(y)s v/here ra^( . ) denotes Haar

measure on G. By the invariance of m_,o v/e have

PROPOSITIQH jvl For f, g e G(G) and x e G, , (f •'' g) = „f g

and (f - g)_ = f * g„.

The pair (G, n) ^'/ill denote a compact group and a homogeneous

space upon which G acts. i.e. fl is a compact Hausdorff space and

there exists a continuous map fZ x G ^ 17 [(a-* x) f—>a ] satisfying;

a) (a^)^ = a^"^ all a e fl, x, y e G

h) a = a all a e fl

c) For each a, the map G -^ H (xi—>a ) is an open map.

Throughout this paper v/e will assume that the action is

transitive. i.e. for each a, [a'^tx e g] = H. We can identify

n with the space of right cosets of a subgroup K where

K = ^^:c(, = a ] some fixed aQ e fl. '.'Ve shall denote the coset

space of K by G/K, and c) ensures that it has the identification

topology. If L is a closed subgroup of G, then L also acts on

n, but not in general transitively. Denote by C(fl) the set of

continuous complex-valued functions on n, and ''o'^- 0(^1, l) those

functions in G(ri) which are constant on the orbits of L. i.e. the
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sets [[a,^;:c G l] ; a e fi|. Let .'B Toe the set of 'bounded

linear operators on the Banach space C(il), and clearly v/e

can emhed G in JS as follov;s: For each x e G, let X e ^i^

he defined hy (Xg)(a) = g(a^) where ^ e C(n) and a e n.

Thai obviously we have:

PROPOSITIffij .2 ^2 ^ e C(n, L) if and only if X^ = g all x e L.

'^''e now give the two basic definitions.

DErriTITIOIT 2.5 The centraliser ala.ebr_a of (C, ^), denoted by

^UG, n), is the set [T e.o:TX = XT all x e G] .

DEFIITITIOH 2.k A subset -I' of C(G) is an S-ring of G if it is

a pointv/ise subalgebra and a convolution subalgebra of G(G),

=• and # - self-adjoint, and contains the constant functions.

We denote the constancy sets of '^" by [Gj^tX e a] with Gq the set

containing 1. Gq is a subgroup and G. = G^G G-. (see [?])

If G^ = l^]i ih is called unitary. i\xiy subset of G which is the

union of G. ' s is called a A-set. and a function constant on the
A. —— --—

G, ' s is called a A-function. Cle^.rly if ^ is uniformly closed,

3' is the set of all A-functions. '.^'e need the following

theorem and corollary from [?]•

TKBOREr.! 2.5 Let :^ be a closed (= uniformly closed) S-ring on G.

Then for each f e t", there is an approximate identity in T

»

OORp'Lld'SLY _2_._6 Let 'h be a closed unitary S-ring on G. Then

for each f e C(G), there is an approximate identity in t",

•Ye will need the following strengthened form of 2,5.





- u -

TEEOREM 2.7 Let ^ be a closed S-ring on G with constancy

sets i^j^t'^ e a] . If f € C(G) and is constant on the right

(left, double) cosets of G^, then there is a left (right,

two-sided) approximate identity for f in c)' . i.e. given

e > 0, there exists a A-neighbourhood V of Gq and u g .i-^

such that u(x) > 0, u(x) = off V, /u(x)dm^(x) = ^, and

for any such u e 3^
, |

|u * f - f
j |^ < e ( |

|f * u - f
| | ^

< e,

I
|u ':= f - f

I I
< e and

|

|f * u - f
|

|
< e) .

CO CO

Proof- We will prove the theorem for the case when f e C(G) is

constant on the right cosets of Gq . The other cases are proved

similarly. For such a function f, .^f = f all x e G^. Since

f is uniformly continuous on G, given e > 0, there exists a

neighbourhood IT of 1 such that
|
i,^f - f|| < e all xy~^ e nX y •

The family [Nx:x e Gq] covers Gq and by compactness, there

exists x^ , ... x^ e c-q such that the family [^x^^si = 1, 2 ... n]

covers Gq. Let IT, = UiTx^ . Then 11^ is an open neighbourhood of

Gq. If V = ^Ic^T^^G^ c 11^], then V is an open A-neighbourhood of

Gq- (t2] p. 125). We have y e V =-sy e ii^^^^yr"'' e ry gome i

=>l
I
f - ^ f M < e^' 'y x^ ' 'oo

-==>!!/ - fll^.^ < e since x.eGQ.

By normality, there is a non-negative function u e 3-" such that

u(x) = off V, u(;-) ^ on Gq, and by talcing a suitable multiple,

we can assume that / u(x)dm^(x) = ^ . For any such u,

This proof is essentially the same as for Theorem k.A in [?],

but it is repeated here in its more precise form for completeness.
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l(u f)(x) - f(x)| = |f u(y)f(y-^x)dm^(y) - f (x)
|

J G-

= if u(y)lf(y-^x) - f(x)]dm^(y)|

< / u(y)|f(y-^x) - f(x)|dm^(y)
J G

^ sup
I I

f - f|L < e.
yeV y

This is true for all x, and so
|
|u =•' f - f

|
|

< e and the theorem

is Droved,

3»_. Tlie case where G is a direct product .

Suppose G = HK = KH, H n K = [^] where H, K are closed

suhgroups. Then we can identify fl with H. We will show first

that C(H, K) is a closed S-ring on H. For f e G(R), denote

by f its extension to G hy making it constant on the right

cosets of K. i.e. f(x) = fCl"^) all x e G. This gives a

1-1 correspondence "betv/een C(H) and those fixnctions in C(G) which

are constant on the right cosets of K.

LELii;IA 5.1 If f e C(H) and x g G, Xf is the restriction to H

of f .X

Propf For all y e H, (Xf)(y) = f(y^) = f(l^^) = f(yx) = ^^i^)

-

LEM:lA .3l.,2 If f g G(H, K), g € C(H) then f * g = f~^
(Note; the first convolution is over G, the second over H)

,

Proof Since both of the functions f * g and f - g are constant

on the right cosets of K, it is sufficient to show that they are
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equal on H. For x e H,

(f - i)(x) =
I
f(xy)g(y"^)dm^(y)

= 11 f(xzt)g(t \ '')dmj^(z)aiY(t) ([i] p. 132.)

= / / f(xz)g(z~'' )dm„(z)din„(t) (since t e K)
JkJe

h k

= / f(xz)g(z"^)dmj^(z)
' H

= (f =^- g)(x)

= (r^)(x).

Hence f •' g = f '' g*

CO_ROLLARY 3 ._3 If f € C(H, K) , g 6 C(H), x e G, then

X(f ^- g) = f - Xg.

Proof Using 3.1, 3.2, 2.1,

Hence X(f ^ g) = f * Xg.

TJ:EP_RB;,L 3_».h If L is a closed subgroup of G, then the functions

in C(H, K) act by left convolutions on C(H, L). i.e. f s C(H, K)

g e G(H, L) implies f - g e C(H, L).

Proof Supposo^ f e C(H, K) , g s C(H, L) . For x e L

X(f '
g) = f '•= Xg = f * g using 3.3 and 2.2. Hence, by 2.2,

f g e C(H, L).

_G_ORO.LI'.ARY 1.5 C(H, K) is a closed unitary S-ring.

Proof C(H, K) is a convolution algebra by putting L = K in 3.U.

To show that it is *-self-ad joint, suppose x, y € H, Then

x, y are in the same orbit under K-i^=;^x g H n KyK
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-A -i -"1 -1
^—^x e H n Ky K f—^-x , y are in the same ortit under K,

The other properties of an S-ring are immediate from the definition.

That C(li, K) is unitary follows from the fact that [^] is an ortit

of K.

It is clear that we can emhed C(H, K) in Jt->{G, H) . For

f € C(H, K) denote by L^ the operator on C(H) mapping g into

f '•'•' g. Then, as a direct corollary to 3.3, we have;

I'MMAJ.'A For f e C(H, K), L^ e ^(G, H)

In [6] p. 80, it was shown that in the finite case,

C(H, K) = -- (G, H) . Clearly this is not true in our case. In

fact, the identity operator I is in ^;(G, H) , hut not in

[L^it e C(H, K)]. Kov/ever, on account of 2.3, v/e know that there

is an approximate identity in C(H, K) . This suggests that

[L^:f G C(H, K)1 is strongly dense in /(G, li) . This is what

we now prove, ''''e need first a stronger form of 3.U.

JMMJA3,»Z If L is a closed subgroup of G, then C(H, L) is an

Invariant suhspace of each T e -4>{Q, fl)

.

Proof Let f € C(G, L) , x s L and T e i:'(G, li) . Then

XTf = TXf = Tf and so Tf s G(G, L).

LKIIA >8 f, 2 € C(H), T e ^(G, H) implies T(f * g) = Tf * g.

Proof Suppose T e iS(G, H) . Then, in particular, T commutes

with right translation by elements of H, But right convolution

by a function in C(H) is the uniform limit of finite suii:s of

right translates. Hence, since T is continuous, T(f -•' g) = Tf * g.

THE ORELI 3 . 9 [L^:f e C(H, K)] is strongly dense in ^.(G, H)

.
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G(H, K) is a closed iinitary S-ring, there exists an

approximate identity u, in G(H, K) for each f. (i - 1, ..., n)

,

Thus, for each i, u, - f .
-> f . uniformly as k -> co. Let

% = ^^Ic*
^^®^ % ^ ^^^' ^^ ^^ ^'^ ^^^ % * ^i " '^^Ic

* ^i =^^k*^i)

"by 3«8. Therefore s for each i = 1, ..., n,

11% *fl -«ilL^= l|T(Uj^«f, -fi)IL,< IITII llu,, «fi -f^iL
-^ as k -^ oo.

i.e. T is in the strong closure of [L^if e C(H, K) j

,

ij..
_
The general case .

For an arbitrary homogeneous space n, w^e use essentially

the same m_ethods, though there are some interesting differences

since n has not got a group structure. In particular we

show that although C(n, K) is not itself an S-ring, it is the

image of an S-ring on G under the canonical map C(G) -* C(P.) .

(iTote that in this case also, there is a natural 1-1 correspondence

between C(n) and [f e C(G);f constant on the right cosets of K]

given hy t(x) = S(^o^ where ^ G G(n), | e G(g) and a^ is the

element of fl corresponding to K in G/k) . The steps in the proof

follow the same pattern as in §3, so we simply quote the

corresponding results and give proofs only when there is a

significant variation.
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LE^JMA k.^ If ? s C(n) and x e G, xC = I .

Proof As 3.1 .

Define the convolution ? * r) of two functions ?, ti e C(il) "by

g * ri = g --^

-n

.

This is v/ell defined since the convolution in G of tv/o functions

constant on the right cosets of K is also constant on the right

cosets of K.

I^IvlARK, L1-..2 This convolution is nojt equivalent to the usual

one in H when G = H]<: = KH, HnK= [1]. Indeed, we will shov/

that with the convolution just defined, G(n, K) is a left ideal

of G(n.). However, it is true that if f e C(H, K), then the

two definitions of f * g coincide. (Lemma 3.2)

Define an Involution in C(n, K) by 5" = 1*.

REI.IAJgC^ U« 3. This cannot, in general be extended to the whole

of C(ri) since the set of functions [Z'.B, e C(n) j is the set

of continuous functions on G which are constant on the right

cosets of K, and so is not *-self-adjoint (linless K is normal).

However it is well-defined on C(n, K) since £, s C(H, K) ^=^ 1

is constant on the double cosets of K.

LEiaiA U.i^- If ^, Ti e C(n) and x e G, X(C * ri) = g "' Xt).

Proof y\s 3.3, though here we do not need that g e C(n, k) .

LEMHAj4i5. If L is a closed subgroup of G, then C(n, l) is a

left ideal of C(n)

.

P_ro_o,f As 3.U - again we do not need C e 0(17, k) .
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JjEWIA h_.6_ [1;^ e G(fi, K)1 is a closed S-ring on G with

constancy set containing A equal to K.

Proof 1'^,'e have shown above that lit? e G{^, K)] is the douhle

CO set S-rlng of the subgroup K.

LB?JIA U.7 If C s C(n), L^ e ^(g, i^)

.

gr_opf As 3.6.

Thus, in this case, we have the whole of G(fl) embedded in .^^(G, fl).

However, this is simply because of the different definition of

convolution, and it is still true that I'^^'Z e C!(n, k) ] is strongly

dense in >_' (G, fl), as we shall now prove.

LEI'EIiV J4-.. 8_ If L is a closed subgroup of G, then C(n, L) is an

invariant sub space of each T e JoiO, H)

Proof As 3.7.

LSJ:gjAA^ If S, Ti e C(n), T e Mg, T.) , then T(? * n) = T? * ti.

Proof As 3.8, though here we use ? and r] in C(G) and the

corresponding operator T v/hich commutes v\^ith translation by elements

of G.

LEj;n.IA J4 . 1 .0. For functions in C(n), there is a left approximate

identity in C(^, K)

.

Proof If ?. , . . . , ?^ G C(n) , then I^ , . . . , 1^ g C(G) and are

constant on the right cosets of K, By 2,6, there exists a left

approximate Identity in '3" = 1%:S, s C(P^, K) 1 . i.e. there exists

n,^ G C(n, K) such that for each i, u, - 1. ^ 1.; uniformly as

Ic -» oo. Since u, * £;. = u, * 1. , v/e have, for each i, u, * S. -^ g.

uniformly as k ->• oo.
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TI-iaORIDM .^'11 [LgtS e C(n, k)] is stronsly dense in ^G, fl).

Proof In the preceding lemmas, we have all the corresponding

results to those that were used in 3.9, and so the proof is the

same

.

This work was suhmitted as part of a Ph.D. thesis

at the University of ITewcastie-upon-Tyne in June 1966, and my

tharJ's are due to Professor P.P. Bonsall for his help and

encouragement as supervisor, and to Professor H. 'fielandt for

the helpful conversations at the start of this work.
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